

BUILDING TRUST

PRODUCT DATA SHEET Sikagard[®]-555 W Elastic

High crack-bridging protective coating for concrete

DESCRIPTION

Sikagard[®]-555 W Elastic is a 1-part, water-based, UVcuring, plasto-elastic protective coating for concrete. It has high static and dynamic crack-bridging properties at temperatures below 0°C without requiring a crackbridging intermediate coating. Sikagard[®]-555 W Elastic complies with the requirements of EN 1504-2 as protective coating.

USES

As a protective and decorative coating for:

- New concrete or reinforced concrete structures and elements at risk to cracking
- Concrete repair refurbishment works over Sika® pore filling or smoothing mortars and overcoating existing firmly bonded coatings
- Reducing the deterioration of concrete and assisting with controlling the corrosion of any embedded steel reinforcement
- Increasing the service life to all types of concrete structures and elements subject to cracking / cyclic movement: buildings, bridges, car parks
- Exterior use
- Suitable for:
- Protection against ingress (Principle 1, method 1.3 of EN 1504-9),
- Moisture control (Principle 2, method 2.3 of EN 1504-9)
- Increasing the resistivity (Principle 8, method 8.3 of EN 1504-9)

CHARACTERISTICS / ADVANTAGES

- For use on normal / lightweight concrete and fibre cement
- Static and dynamic crack-bridging at low temperatures (-20 °C)
- Resistant to freeze / thaw and de-icing salts
- Good adhesion to concrete
- Variable consumption to suit performance requirements
- High diffusion resistance against CO₂ reducing the rate of carbonation
- Available in many colours
- Water vapour permeable
- Very good resistance against weathering and ageing
- No sagging at high application consumptions
- Water-based
- High covering power (good opacity)
- Easily maintained by overcoating
- Reduced tendency to dirt pick up and contamination

APPROVALS / STANDARDS

 CE Marking and Declaration of Performance to EN 1504-2 - Surface protection product for concrete -Coating

Product Data Sheet Sikagard®-555 W Elastic September 2022, Version 01.01 020303030020000020

PRODUCT INFORMATION

Product Declaration	EN 1504-2: Surface protection product for concrete - Coating		
Chemical Base	Acrylate dispersion		
Packaging	15 L container Refer to current price list for packaging variations		
Shelf Life	24 months from date of production		
Storage Conditions	The product must be stored in original, unopened and undamaged pack- aging in dry conditions at temperatures between +5 °C and +30 °C. Always refer to packaging.		
Appearance / Colour	Thixotropic liquid		
	Final appearance	Smooth sheen finish	
	•	efer to current price list for colour range n colour charts will be approximate. Apply colour sample and confirm se lected colour under real lighting cor ditions	
	When product is exposed to direct prolonged sunlight, there may be some discolouration and colour variation.		
Density	~1.37 kg/l (at +20 °C)		
Solid Content by Weight	~64 %		
Solid Content by Volume	~57 %		
Volatile Organic Compound (VOC)	Con- 0.45%		

TECHNICAL INFORMATION

Tensile Strength	Consumption	Temperature	Value at break	(EN ISO 527)
	$2 \times 300 \text{ g/m}^2$	+23 °C	~1.3 N/mm ²	
		-20 °C	~12.1 N/mm ²	
	2 × 500 g/m ²	+23 °C	~1.0 N/mm ²	
		-20 °C	~12.6 N/mm ²	
Elongation at Break	Consumption	Temperature	Value at break	(EN ISO 527)
	$2 \times 300 \text{ g/m}^2$	+23 °C	~450 %	
	C	-20 °C	~28 %	
	$2 \times 500 \text{ g/m}^2$	+23 °C	~700 %	
		-20 °C	~25 %	
Crack Bridging Ability	Static crack-brid	ging at -20 °C (EN 1	1062-7:2004. Meth	od A):
	Consumption*			assification
	$2 \times 350 \text{ g/m}^2$	2100 µm	A4	<u> </u>
	$2 \times 500 \text{ g/m}^2$	2650 μm	A5	

Dynamic cruck bit		1062-7:2004. Method	в):
Consumption*		Classification	
2 × 350 g/m ²		B2	
-			
2 × 600 g/m ²		B4,1	
* Sikagard [®] -552 V	/ Aquaprimer was	used as primer	
Consumption	Value at break	Failure mode	(EN 1542)
2 × 300 g/m²	1.35 MPa	Cohesive in coat-	
		ing	
2 × 500 g/m²	1.40 MPa	Cohesive in coat-	
		ing	
Consumption	Capillar	y absorption	(EN 1062-3)
2 × 500 g/m ²			
0	2	2 500 ((EN 7702 4)
			(EN 7783-1)
-	430 μm	760 μm	
	25 m	2.1 m	
	2.5 11	5.1 111	
	3255 µH ₂ O	3940 uH.O	
	5255 p. 120		
· •	< 5 m	< 5m	
breathability			
Consumption	2 × 300 g/m ²	2 × 500 g/m ²	(EN 1062-6)
	d = 400 μm	d = 750 μm	
ness		·	
Equivalent air lay-	S _{dvCO2} = 95 m	S _{d.CO2} = 121 m	
er thickness			
Diffusion coeffi-	μCO ₂ = 239 200	μCO ₂ = 161 030	
cient μCO_2		<u> </u>	
	S _{d,CO2} > 50 m	S _{d,CO2} > 50 m	
protection			
After 2000 hours i	n QUV accelerated	weathering test cham	ber:
Consumption	Observation	Delta E	(EN 1062-11)
2 × 300 g/m ²	No bubbles, pin-	1.89	
	holes, cracks or		
	other damage		
2 × 500 g/m²		1.36	
	other damage		
2 × 500 g/m ²	1.2 MPa	No delamination or blistering	(EN 13687-1)
B-s1,d0 (2 × 500 g	()		(EN 13501-1)
	$\frac{2 \times 350 \text{ g/m}^2}{2 \times 500 \text{ g/m}^2}$ $\frac{2 \times 600 \text{ g/m}^2}{2 \times 600 \text{ g/m}^2}$ * Sikagard®-552 W Consumption $2 \times 300 \text{ g/m}^2$ $\frac{2 \times 500 \text{ g/m}^2}{2 \times 500 \text{ g/m}^2}$ $\frac{\text{Consumption}}{2 \times 300 \text{ g/m}^2}$ $\frac{\text{Consumption}}{2 \times 300 \text{ g/m}^2}$ $\frac{2 \times 500 \text{ g/m}^2}{2 \times 500 \text{ g/m}^2}$	$2 \times 350 \text{ g/m}^2$ $2 \times 500 \text{ g/m}^2$ $2 \times 500 \text{ g/m}^2$ * Sikagard®-552 W Aquaprimer wasConsumptionValue at break $2 \times 300 \text{ g/m}^2$ 1.35 MPa $2 \times 500 \text{ g/m}^2$ 1.40 MPaConsumptionCapillar $2 \times 300 \text{ g/m}^2$ 0.07 kg/ $2 \times 500 \text{ g/m}^2$ 0.01 kg/ $2 \times 500 \text{ g/m}^2$ 0.01 kg/ $2 \times 500 \text{ g/m}^2$ 0.01 kg/Dry Film Thick- ness $2 \times 300 \text{ g/m}^2$ Equivalent air lay- er thickness 2.5 m Diffusion coeffi- cient $\mu H_2 O$ $3255 \mu H_2 O$ Requirement for breathability 5 m Consumption Dry Film Thick- ness $2 \times 300 \text{ g/m}^2$ Diffusion coeffi- 	$2 \times 350 \text{ g/m}^2$ B2 $2 \times 500 \text{ g/m}^2$ B3,1 $2 \times 600 \text{ g/m}^2$ B4,1* Sikagard*-552 W Aquaprimer was used as primerConsumptionValue at break 1.35 MPaFailure mode Cohesive in coating $2 \times 300 \text{ g/m}^2$ 1.35 MPaCohesive in coating $2 \times 500 \text{ g/m}^2$ 1.40 MPaCohesive in coating $2 \times 500 \text{ g/m}^2$ 0.07 kg/m ² ·h ^{0.5} $2 \times 500 \text{ g/m}^2$ 0.01 kg/m ² ·h ^{0.5} $2 \times 500 \text{ g/m}^2$ 0.01 kg/m ² ·h ^{0.5} $2 \times 500 \text{ g/m}^2$ 2.5 m 3.1 m $3255 \mu H_2O$ $3940 \mu H_2O$ $3940 \mu H_2O$ cient μH_2O $3255 \mu H_2O$ $3940 \mu H_2O$ $4400 \mu m$ $cient \mu L_2O$ $4400 \mu m$ $ress$ $\mu CO_2 = 239 200$ $Equivalent air lay-er thickness$ $S_{d,co2} = 95 m$ $S_{d,co2} > 50 m$ $S_{d,co2} > 50 m$ $Pry Film Thick-$ ness $\mu CO_2 = 239 200$ $\mu CO_2 = 161 030$ $G_{d,co2} > 50 m$ $\mu CO_2 = 50 m$ $S_{d,co2} > 50 m$ $2 \times 300 g/m^2$ No bubbles, pin- holes, cracks or other damage $2 \times 500 g/m^2$ $Observation$ $Delta E$ $2 \times 500 g/m^2$ No bubbles, pin- holes, cracks or other damage $2 \times 500 g/m^2$ $1.2 MPa$ No delamination

System Structure	System	Product	Number of coats
	Primer	Sikagard [®] -552 W	1
		Aquaprimer or	
		Sikagard [®] -551 S Elastic	
	Protective coating	Sikagard [®] -555 W Elastic	2*

* For intensive yellow or red colour shades and / or a dark substrate, more than 2 coats maybe required (or greater thickness per coat).

BUILDING TRUST

Product Data Sheet Sikagard®-555 W Elastic September 2022, Version 01.01 020303030020000020

Primer options	
Normal absorbent concrete	Sikagard [®] -552 W Aquaprimer
Dense, non-absorbent concrete	Sikagard [®] -551 S Elastic
Sika [®] levelling / re-profiling mortars	
weak concrete with a tensile adhe-	
sion strength < 1 N/mm ²	
low temperature	
Very dense concrete	Sikagard [®] -551 S Elastic with up to
	10 % Sika [®] Thinner C added

APPLICATION INFORMATION

Consumption	Product	oduct Per coat (k			
	Sikagard [®] -552 W Aquap		•		
	Sikagard [®] -551 S Elastic	~0.10-0.15			
	Sikagard [®] -555 W Elastic	Basic perfor	rmance: ~0.25–0.30		
		High crack-	oridging: ~0.50–0.60		
	These figures are theoretical and do not allow for any additional material due to surface porosity, surface profile, variations in level or wastage etc.				
Layer Thickness	Minimum required dry film thickness (DFT):				
	To achieve required characteristics: \sim 210 μ m				
	CO_2 equivalent air thickness of 50 m				
	For high static and dyna bridging ability	mic crack ~750 μm	~750 μm		
	Note: The minimum required DFT for performance requirements may not have the opacity to cover dark substrates. A greater thickness maybe required.				
Ambient Air Temperature	+8 °C min. / +35 °C max.	+8 °C min. / +35 °C max.			
Relative Air Humidity	≤ 80 %				
Dew Point	Substrate and ambient temperature must be at least +3 °C above dew point				
Substrate Temperature	+8 °C min. / +35 °C max.	+8 °C min. / +35 °C max.			
Waiting Time / Overcoating	Waiting time between coats at +20 °C substrate temperature:				
	Previous coating	Next coating	Waiting time (minimum)		
	Sikagard [®] -552 W Aquaprimer	Sikagard [®] -555 W Elastic	5 hours		
		Sikagard®-555 W Elastic	18 hours		
		Sikagard [®] -555 W Elastic			
			12 hours**		
	 * For typical consumption ** For highest consumption 				
	Times are approximate and will be affected by changing ambient condi-				
		tions particularly temperature and relative humidity.			
	When application is on existing coatings, the waiting time for both primers				
	will increase by 100 %.				
	Maintenance coats of Sikagard [®] -555 W Elastic can be applied without				
	priming if the existing coat has been thoroughly cleaned.				
Applied Product Ready for Use	Full cure: ~7 days at +20	Full cure: ~7 days at +20 °C			

Product Data Sheet Sikagard®-555 W Elastic September 2022, Version 01.01 020303030020000020

BASIS OF PRODUCT DATA

All technical data stated in this Product Data Sheet are based on laboratory tests. Actual measured data may vary due to circumstances beyond our control.

FURTHER DOCUMENTS

Sika Method Statement: Protective Coatings

LIMITATIONS

- Do not apply if rain is expected
- Application during cold temperatures below recommended application temperatures may reduce adhesion values.
- Allow enough time for substrate to dry after rain or other inclement conditions.
- During application, regular monitoring of the wet film thickness and material consumption is advised to ensure the correct layer thickness is achieved.
- When over-coating existing coatings, compatibility and adhesion testing is recommended.
- Ensure the primer is thoroughly dry before overcoating to prevent formation of bubbles and blisters, particularly in warmer weather.
- Dark colour shades (especially black, dark red and blue, etc.) may fade quicker than other lighter colour shades. Therefore a maintenance / refresher coat might be required at an earlier interval than usual.

ECOLOGY, HEALTH AND SAFETY

For information and advice on the safe handling, storage and disposal of chemical products, users shall refer to the most recent Material Safety Data Sheet (MSDS) containing physical, ecological, toxicological and other safety-related data.

REGULATION (EC) NO 1907/2006 - REACH

According to the EU-Directive 2004/42, the maximum allowed content of VOC (Product category IIA / c type wb) is 40 g/l (Limits 2010) for the ready to use product.

The maximum content of Sikagard[®]-555 W Elastic is < 40 g/l VOC for the ready to use product.

APPLICATION INSTRUCTIONS

SUBSTRATE QUALITY / PRE-TREATMENT

EXPOSED CONCRETE WITHOUT EXISTING COATING

Substrate must be clean, dry and free of all contaminants such as dirt, oil, grease, surface treatments and loose friable material which can reduce the adhesion of the coating.

Substrate must be prepared mechanically using suitable equipment such as abrasive blast cleaning or high pressure water jetting to achieve a textured surface profile suitable for the product thickness and required coating adhesion values.

New concrete must be at least 28 days old. Surface defects, blowholes, cavities pores etc. must first be prefilled using a pore filler (e.g. Sikagard[®]-555

Product Data Sheet Sikagard®-555 W Elastic September 2022, Version 01.01 020303030020000020 W Elastic, Sika MonoTop[®]-723 N, Sikagard[®]-720 Epo-Cem[®] etc.) to provide a defect free surface.

Allow a curing time of at least 4 days before coating. If Sikagard[®]-545 W Elastofill or Sikagard[®]-720 EpoCem[®] is used, then coating can be applied within 24 hours.

EXPOSED CONCRETE WITH EXISTING COATING Existing coatings must be tested to confirm their adhesion to the substrate and their compatibility. As guidance, in the absence of any national standards or regulations, adhesion test average $\ge 0.8 \text{ N/mm}^2$ with no single value below 0.5 N/mm².

Inadequate adhesion

Existing coatings must be completely removed using suitable equipment and the substrate prepared the same as for 'without existing coating'.

Adequate adhesion

Thoroughly clean the existing fully bonded coating surfaces of all contaminants using suitable equipment such as steam cleaning or high pressure water jetting. For a water-based existing coating, use Sikagard[®]-552 W Aquaprimer as a primer.

For a solvent-based existing coating, use Sikagard®-551 S Elastic Primer as a primer.

If coating type is unknown, carry out compatibility and adhesion testing to determine which primer is most suitable. Wait at least 2 weeks before conducting the adhesion test, as guidance, adhesion test average ≥ 0.8 N/mm² with no single value below 0.5 N/mm².

APPLICATION

Strictly follow installation procedures as defined in method statements, application manuals and working instructions which must always be adjusted to the actual site conditions.

Primer coat

After application and curing of any levelling/smoothing coat /pore filler, apply by brush or roller, 1 coat of the appropriate primer at the required consumption rate, to all the surfaces requiring the Sikagard[®]-555 W Elastic coating.

Protective coating

Sikagard[®]-555 W Elastic is supplied ready for use. Before application, mix for 2 minutes using a low speed electric single paddle mixer or other suitable equipment. Mix the liquid and all the coloured pigment until a uniform colour has been achieved.

After application and waiting time of the primer, apply evenly by brush, roller or airless spray, 1-2 coats of Sikagard[®]-555 W Elastic to achieve the required total dry film thickness.

Also refer to Sika Method Statement: Protective Coatings

CLEANING OF TOOLS

Clean all tools and application equipment with water immediately after use. Hardened material can only be mechanically removed.

LOCAL RESTRICTIONS

Please note that as a result of specific local regulations the performance of this product may vary from country to country. Please consult the local Product Data Sheet for the exact description of the application fields.

LEGAL NOTES

The information, and, in particular, the recommendations relating to the application and end-use of Sika products, are given in good faith based on Sika's current knowledge and experience of the products when properly stored, handled and applied under normal conditions in accordance with Sika's recommendations. In practice, the differences in materials, substrates and actual site conditions are such that no warranty in respect of merchantability or of fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, can be inferred either from this information, or from any written recommendations, or from any other advice offered. The user of the product must test the product's suitability for the intended application and purpose. Sika reserves the right to change the properties of its products. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will be supplied on request. It may be necessary to adapt the above disclaimer to specific local laws and regulations. Any changes to this disclaimer may only be implemented with permission of Sika® Corporate Legal in Baar.

SIKA HONGKONG LTD. Rm.1507-12, Blk A, New Trade Plaza, 6 On Ping Street, Shatin, N.T., H.K. Phone: +852 26868108 Fax: +852 26453671

Mail: marketing@hk.sika.com Website: www.sika.com.hk

Product Data Sheet Sikagard®-555 W Elastic September 2022, Version 01.01 020303030020000020 Sikagard-555WElastic-en-HK-(09-2022)-1-1.pdf

